Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 2. Cystine disulfides involved in catalysis of peroxide reduction.
نویسنده
چکیده
The two-component alkyl hydroperoxide reductase enzyme system from Salmonella typhimurium catalyzes the pyridine nucleotide-dependent reduction of alkyl hydroperoxide and hydrogen peroxide substrates. This system is composed of a flavoenzyme, AhpF, which is related to the disulfide-reducing enzyme thioredoxin reductase, and a smaller protein, AhpC, which lacks a chromophoric cofactor. We have demonstrated that NADH-linked reduction of AhpF under anaerobic conditions converts two cystine disulfide centers to their dithiol forms. The AhpC cystine disulfide center, shown to exist as an intersubunit disulfide bond, is stoichiometrically reducible by NADH in the presence of a catalytic amount of AhpF and can be reoxidized by ethyl hydroperoxide. Disulfide bridges within oxidized AhpF form between Cys129 and Cys132 and between Cys345 and Cys348; the two C-terminal half-cystine residues, Cys476 and Cys489, exist as free thiol groups in oxidized AhpF and play no role in catalysis. Removal of the N-terminal 202-amino acid segment containing the Cys129-Cys132 disulfide center obliterates the ability of AhpF to transfer electrons to 5,5'-dthiobis(2-nitrobenzoic acid) (DTNB) and AhpC. NADH added anaerobically to AhpF causes spectral changes consistent with preferential reduction of both disulfides relative to flavin reduction; the reduction potentials of the disulfide centers are thus appropriately poised for electron transfer from NADH and flavin to disulfide-containing substrates (AhpC or DTNB), and ultimately to peroxides from AhpC. Blue, neutral flavin semiquinone is also generated in high yields during reductive titrations (91% yield during dithionite titrations), although the relatively slow formation of this species indicates its catalytic incompetence. A long wavelength absorbance band beyond 900 nm attributable to an FADH2-->NAD+ charge transfer interaction is generated during NADH, but not dithionite, titrations and may be indicative of a species directly involved in the catalytic cycle. A catalytic mechanism including the transient formation of cysteine sulfenic acid within AhpC is proposed.
منابع مشابه
Flavin-dependent alkyl hydroperoxide reductase from Salmonella typhimurium. 1. Purification and enzymatic activities of overexpressed AhpF and AhpC proteins.
The two components, AhpF and AhpC, of the Salmonella typhimurium alkyl hydroperoxide reductase enzyme system have been overexpressed and purified from Escherichia coli for investigations of their catalytic properties. Recombinant proteins were isolated in high yield (25-33 mg per liter of bacterial culture) and were shown to impart a high degree of protection against killing by cumene hydropero...
متن کاملRequirement for the two AhpF cystine disulfide centers in catalysis of peroxide reduction by alkyl hydroperoxide reductase.
AhpF, the alkyl hydroperoxide reductase component which transfers electrons from pyridine nucleotides to the peroxidase protein, AhpC, possesses two redox-active disulfide centers in addition to one FAD per subunit; the primary goal of these studies has been to test for the requirement of one or both of these disulfide centers in catalysis. Two half-cystine residues of one center (Cys345Cys348)...
متن کاملRoles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium.
The catalytic properties of cysteine residues Cys46 and Cys165, which form intersubunit disulfide bonds in the peroxidatic AhpC protein of the alkyl hydroperoxide reductase (AhpR) system from Salmonella typhimurium, have been investigated. The AhpR system, composed of AhpC and a flavoprotein reductase, AhpF, catalyzes the pyridine nucleotide-dependent reduction of organic hydroperoxides and hyd...
متن کاملStreptococcus mutans H2O2-forming NADH oxidase is an alkyl hydroperoxide reductase protein.
Nox-1 from Streptococcus mutans, the bacteria which cause dental caries, was previously identified as an H2O2-forming reduced nicotinamide adenine dinucleotide (NADH) oxidase. Nox-1 is homologous with the flavoprotein component, AhpF, of Salmonella typhimurium alkyl hydroperoxide reductase. A partial open reading frame upstream of nox1, homologous with the other (peroxidase) component, ahpC, fr...
متن کاملHydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria.
Amphibacillus xylanus and Sporolactobacillus inulinus NADH oxidases belonging to the peroxiredoxin oxidoreductase family show extremely high peroxide reductase activity for hydrogen peroxide and alkyl hydroperoxides in the presence of the small disulfide redox protein, AhpC (peroxiredoxin). In order to investigate the distribution of this enzyme system in bacteria, 15 bacterial strains were sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 35 1 شماره
صفحات -
تاریخ انتشار 1996